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ABSTRACT

The global bifurcation of flow field structures is examined to
determine its route to chaos. These flows occur during the physical
vapor transport process for crystal growth. We use direct numeri-
cal simulation and cover the Rayleigh number range
0 < Rar _ 5.03×107. The bifurcation diagram of the process indicates
that there are four regions with distinct flow field structures, and
three bifurcation events for a subrange 0 < Rat _ 4.05x10 t'. These
regions have distinct dynamical characteristics as well. The flow
field bifurcates from one region to another through selforganiza-
tion into various ceUular structures. The sequence of events in the
flow field structure in each region shows a transition from a uni-
directional advective..diffusive flow to two cells, subsequently to
four cells, and finally to six cells. The dynamical characteristics of
the process show that the first bifurcation event gives birth to a
stable spiral cycle. The trajectory of the spiral cycle approaches a
point attractor. The second bifurcation gives rise to a primary
Hopf bifurcation; it connects a stationary state to a periodic state,
hence a limit cycle results. The third bifurcation gives birth to a
two frequency torus, also known as a secondary Hopf bifurcation.
The route to chaos is via the two frequency torus bifurcation as

proposed by Newhouse, Ruelle, and Takens.

1. INTRODUCTION

We investigate the global bifurcation of flow field structures
in the physical vapor transport process via direct numerical simu-
lation. The flow field structures are computed for a range of
parameters spanning low gravity to ground based conditions.
Through the construction of a bifurcation diagram, we trace vari-
ous bifurcations to establish the route to chaos. For each transition
region of the bifurcation diagram, we dexluce qualitatively from
bifurcation and stability analysis the mechanisms through which
stability is lost. Transition of the flow field from steady, periodic,
quasi-periodic, and chaos is quantified through time histories,
phase space trajectories, and power spectra.

The physical vapor transport process (an example of a dissi-
pative dynamical system) is used to grow single crystals for dev-
ice applications. This process involves sublimation of a material
from a hot source and condensation to a cool sink where the cry-
stal is formed. During transport an inert gaseous component is also
present which is rejected at the interface. For practical reasons
this process is carded out in the vertical configuration in which
the bottom is hotter than the top. This is similar to the Rayleigh-
Benard process, except for fluxes at the boundaries. In our
research, the source material of interest is mercurous chloride.
This material has attractive properties for device applications, and

it is used in acousto-optic opto-electronic devices such as Bragg
cells, x-ray detectors, wideband spectrocospic devices, and
acousto-optic tunable filters.

Dissipative dynamical systems are known to exhibit a rich
variety of spatial patterns stemming from their inherent nonlinear-
ity. These spatial patterns are functions of parameters which
govern the extent to which the system deviates from thermo-
dynamic equilibrium 1 . A few notable examples are the
Rayleigh-Banard, double-diffusive systems, and reaction-diffusion
processes in liquid mixtures. The spatial patterns of the Rayleigh-
Benard convection have been studied recendy both experimentally
2 and numerically 3. Because these systems are governed by non-
linear coupled partial differential equations, solutions for a
parametric range is difficult. Approximations are the usual
recourse; one such approximation is through linear stability
analysis which is quite useful for establishing stability boundaries.
Because of the inherent nature of this approximation, it establishes
the first bifurcation point. Beyond the first bifurcation point, the
nonlinearity of the system becomes important and recourse has to
be made to the solution of the coupled equations. Another approx-
imation technique that has yielded much insight into the solution
of these systems, is truncation of the nonlinear equations. The suc-
cess of this approach is epitomized in the Lorenz system of equa-
tions 4 . In this approach, a coupled system of nonlinear partial
differential equations (the Rayleigh-Benard system) is successfully
reduced to a system of coupled ordinary differential equations " .
The advantage of this approach is that it allows the physics of the
problem to be studied more easily than with the full set of equa-
tions. Solutions can be obtained for a wide range of parameters,
and the results can be displayed succintiy on a bifurcation
diagram. Numerical techniques can be employed such as continua-
tion methods 6.7 to construct bifurcation diagrams for the entire
parametric space. Urffortunately, as pointed out by Marek & Kubi-
chek 7, these techniques are not applicable to coupled nonlinear
partial differential equations with more than one spatial coordinate,
and the theory for these systems is still in development. It is there-
fore necessary to solve the entire system of equations to construct
the bifurcation diagram in order to obtain insight into the non-
linear re=line.

The purpose of this work is to analyze the physical vapor
transport process from a dynamical systems point of view and
investigate its route to chaos. To that end, we solve the full time
dependent nonlinear coupled equations numerically, and construct
a bifurcation diagram to show its distinct bifurcations on its route
to chaos. The parametric range considered falls within practical
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conditions for crystal growth systems. Dissipative dynamical sys-
tems are known to exhibit many different routes to chaos (Verlade
8 ). Among these routes are period doubling (subharmonics),
intermitteney, and quasi-periodicity. We show that four distinct
flow field regions, each with its own structure, separated by three
bifurcation events occur in our system on its way to chaos. In the
first region, however slight the deviation from thermodynamic
equilibrium, there always exist a base flow stemming from the
advective-diffusive flux which is stable. The time history of the
flow field shows that it approaches a point attractor asymptotically.
This is in contrast to the Rayleigh-Bernard system which has a
quiescent state. At the first bifurcation event, this flow selforgan-
izes into two cells. In the second region, the dynamics of the flow
field show that there is a birth of a spiral in which a point attrac-
tor is approached. At the second bifurcation event, there is a stan-
dard Hopf bifurcation; the flow field selforganizes into four cells.
This is accompanied by the birth of a limit cycle. In the third
bifurcation, there is an exchange of stability from a limit cycle to
a two frequency torus which exhibits quasi-periodicity. This is
also known as a secondary Hopf bifurcation. There are six cells
in this region. The route to chaos stems from the two frequency
torus bifurcation which has been proposed by Newhouse, Ruelle,
and Takens 9.

This paper is organized as follows. We describe the physics
of the physical vapor transport process and its mathematical
description. We establish the parametric space of interest. We con-
struct a bifurcation diagram for practical crystal growth parametric
range. We deduce qualitatively the mechanisms by which local
stability is lost from bifurcation and stability theory. We quantify
thoroughly each flow field region through its time histories, phase
space trajectories, and power spectra. And finally we discuss the
relevance if this work to practical crystal growth by the physical

vapor transport process.

2. MATHEMATICAL FORMULATION

The basis of the physical vapor transport process, as shown
in Figure 1, consists of sublimation from the source material and
condensation at the crystal region to form a single crystal. The
vapor component is transported with the presence of an inert com-
ponent. This inert component is either intentionally added or
results from outgassing from container walls or impurities in the
source material. Thus inherently there is always a second com-
ponent present in the system, however small. This inert component
is assumed to be rejected at the interface, and there is no dissocia-

tion of the vapor crystal component. This process can be con-
trolled through either the temperature difference between the
source and crystal as well as intentional addition of a known par-

10
tial pressure of an inert component, typ.ically argon . This pro-
cess occurs at constant total pressure rl . Typical partial pressure
profiles are also shown in Figure I to illustrate trends; for the cry-
stal component, the trends are shown with solid lines. For a fixed
source temperature, the process can be controlled by increasing or
decreasing the temperature at the crystal region. The correspond-
ing partial pressure trends of the crystal component as the tem-

perature difference increases are illustrated with P'A and #A
respectively. The trends for the inert component follow similarly.

For the mathematical description of the problem, consider a
vertical enclosure in which the source is at the bottom and the

crystal at the top. This corresponds to the configuration of interest
for crystal growth of mt_rcurous chloride, in the configuration of
interest, the v coordinate has its origin at the source vapor boun-
dary and ends at the crystal vapor boundary. The height and width
of the cavity are H and L respectively. Let _ be the normal to the
inside enclosure, Y its tangent, and F its boundary. The source and
crystal move so slowly in comparison to the vapor that their
effects are assumed negligible, only the vapor region is con-
sidered. The velocity in the vapor region corresponds to the mass
average velocity. We assume thermodynamic equilibrium at the
interfaces, thus the mass fractions are fixed. For an incompressible
Boussinesq fluid, the governing equations ( * denotes dimensional

variables) comprising of continuity, momentum, energy, and
species may be stated as follow:

v._" - o (1)

- D_" - VI," + _Vh_ + f,_ (2)
P Di" "

DT* . a V2T" (3)
5T

Oo,;
"-57"- " b_8 v2,,,_ (4)

where

p - _(i- 13AT+ vao_)

I bp

Solid --> Vapor --->Solid

F-Source

x _ VaporA&B
Y

_--Ts

/-- Crystal

"-Tc

PT

P,Ac

PAs I _PBc

E, c
PBs I = j I" BC

Y

Typical partial pressure profiles

T
Tc

ermodynamic
equilibrium at interfaces

A - crystal component
B - inert component

Typical process

parameters

T c = 330 °c
T s = 340 °C

Process occurs at constant total pressure (PT)

Figure 1. Basis of the Physical Vapor Transport process
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The initial and boundary conditions are:
Initial conditions:

t-0 0 < x' < L , 0 < y' < H

T"(x" .y" .0) - T; + (y"/H) (To - Ts )

o;(x',y',0)-coJs + (y'IH) (coac - cons)

Boundary conditions:

No slip at the left and right walls,

t >0 _".t-? - 0 , x ° -0 , x" -H , I_ y

Prescribed temperature and fixed mass fraction at the source and
crystal boundary,

T°(x*,O,t')'Ts • co;(x',O.t')-co,_s , y*-0 , Q x

T'(x',ll,t')'Tc • co_(x'.Hot°)-coAc . y*-H , _/ x

Insulated and impermeable boundaries at left and right walls,

VT* tY - O , VCOA " _ -- 0 on I" at x" --0 , x* - L . A/ y

Sublimation and condensation at the boundary of the source and
crystal,

17" .t'7.- /)A,_ (Vo>_"g) . at y -0 . -// I_ ._
1 - o,,_(.r'. 0. t') " . v" .

with vanishing tangential velocity at the interface,

7_ "=/=0 on r at y° -0, y" -H , 1) x

In the above governing equations the transport coefficients
are estimated from molecular theory using Chapman-Enskog's for-
mulas 12 . The condition for sublimation and condensation has

been derived by Westphal & Rosenberger 13, and its applicability
to crystal growth has been oiseussed by Rosenberger & Muller 14.
The gas mixture is assumed to be ideal. It can be shown that,

MA - Ms
[5- 1/_ (4a) and y = (45) (4)

=,;(m. - M,, )+MA

where

¢o_- 1
1 + (erlP,_ - 1) MaIMA " (5)

using the mass fraction and mole fraction relations _2. Pr is the
total pressure and is related to the partial pressures by
(Pr "PA + PB). P_ is known for mercurous chloride, thus the
corresponding mass fraction at the interfaces can be calculated.
This is fixed by the thermodynamics of the process.

For the problem at hand, we are interested in diffusive-

convective physical vapor transport with the presence of impuri-
ties. This is modeled by assuming MA = Ms, this implies I' - 0; thus
the solutal Rayleigh number also vanishes. The excess pressure of
the second component affects the binary diffusion coef-fieient

which determines the advective-diffusive flux at the boundary.
Since D_ is proportonal to llPr, as the level of impurity increases
the advective-diffusive flux decreases, in the limit this problem
approaches the Rayleigh-Benard problem. Note also that as
Ps _0, the binary diffusion coefficient approaches the self-
diffusion coefficient of a single fluid.

2.1 Sealing

The above equations are transformed into vorticity-stream
function relations for computation. The characteristic length, time,
and velocity (Uc) are scaled as H, H21a. and alH respectively. The
mass fraction and temperature are normalized as
o_A- (co,_- O;c)/(co_s - co;c), and T = (T" - T_)/(T_ - T_), respectively.
AT and Aco equal (T; - T_) and (¢0AS-- co;C), respectively. Let,

• dq'" • -_)V" 0v" 3."

" " y-by- _ " .,-b_ ;'" ._. - _'-.

The dinaensionless scaled equations become:

Ar 2 _)2qj _ql

'_-j'z-+ _ " -_ (7)

"PF"ffi"+ -P'7 Ar - Ar 2t _ + v_d.] + + RaTAr _ (8)

+ ÷ . + (9)

+ r ""9_ " Z_- + _ • (10)+ v-.._ I JAr _ c32coA

The conditionsforsublimationand condensationatthe boundaries
become:

1 Aco _COAS
v(x,0.t) - -

(1-coAs) Oy

I ACO o3COaC
vCx.Lt) - - _ _ --03:-

The dimensionless parameters are:

Ar H RaT _AT £g,, tt 3 Uott
T "va DAB

Pr - I.e - .
(x 1),,_

Let h be the vector space of the independent parameters.
Thus A-A (Rar ,Ar. Peo Pr .Le) is a vector space with five
independent parameters. These parameters are respectively, the
Rayleigh number, the aspect ratio, the Peclet, Prandtl. and Lewis
numbers. The entire dynamical process can be quantified by study-
ing the effects of these parameters on the dynamics of the flow
field. Note that the problem has two characteristic velocities, t.
and Uo. They represent components from convection (U_) which is
dependent on buoyancy, and the advective-diffusive flux R,',,) at
the interfaces which is dependent on the thermodynamics. These
two variables are independent of each other. U, can be estimated
by relating the Peelet number to the thermodynamic variables; this
prescribes the Peclet number. This is given by

Pe - In(PB(H)IPs (0)) (1 1)

These equations are solved using finite difference techniques,
see 15 for details. We use a 60x60 grid size for all of our compu-
tations. The choice of this grid size is adequate to resolve the
details of the flow field and did not affect the number of ceils in
the flow or resolution of the structures.

3. Results and Discussion

3.1 Parametric Space Variation

The construction of bifurcation diagrams to study variation of
five independent parameters (A = A (Rar , Ar . Pe . Pr . Le ))
represents a formidable computational task. We restricted the
number of parametric variations by considering the most important
variations that occur experimentally for a given crystal growth
system. For a given crystal growth condition we selected argon as
an inert gas to represent the impurity component at a fixed partial
pressure of 10 Torr. Other than effects of temperature variations,
this fixes the range on the Peclet number. Since we are consider-
ing a specific system, mercurous chloride, the range for Pr and Le
numbers is also fixed. These three parameters can be seen as pas-
sive in the parametric variation. Since we are interested in the
growth of large bulk single crytals, the cavity size considered is 5
cm by 5 era, unless otherwise specified the aspect ratio is fixed at
1. The aspect ratio is varied to show its effect on flow stability;
however, this is limited to a fixed crystal growth condition, i.e.
&T - 10°K. Given a cavity with a certain aspect ratio, the experi-
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Figure 2. Bifurcation diagram for Ar=-I and 0 < Ra T < 4.05x106

mentalist is free to vary the temperature difference between the
source and crystal to achieve various growth conditions. This
translates to variation of the Rayleigh number. In this light, we
investigate thoroughly the effect of variation of the Rayleigh
number on the fluid dynamic behavior. This effectively reduces
our parametric variation to a single parameter (A = A (Rat)), the
Rayleigh number. A few selected parameters are shown in Table
1. These conditions range from low gravity environment aboard a
Space Shuttle to ground based conditions in a laboratory.

In Table 1 the thermophysical properties required for the
dimensionless numbers are calculated at the average temperature.
The variation in the Prandtl and Lewis numbers stem from varia-

tion in the thermophysical properties due to temperature. Similarly
the range in the Peclet number is due to effects of thermodynamic
conditions on temperature. Thus the effects of these dimensionless
parameters are passive in the parametric variation as compared to
the Rayleigh number.

TABLE 1 - PARAMETRIC RANGE

Case

1
2
3
5

6
7
8
9

10
11

12
13
14
15

16
17
18
19

_. Ra T Pr

1 3.O2xlO4 .815
1 3.83x10a .871
1 t.0Sxl05 .848
1 2.66x105 .814

1 6.]0x105 .773
lxl0 -2 6.10x103 .773

1 7.45x10 s .763
1 s.19x10 s .758

1 1.28x10 6 .736
I t.92x10 _ .717

Âxl0 -5 1.92x101 .717
lxl0 _ 1.92x10 ° .717
lxlO -7 1.92x10-1 .717

1 4.05xI0 s .686
1 8.03x106 .663
1 1.53xi07 .646

1 2.81x107 .633
1 5.03x107 .623

Le Pe
.408 .748
.411 .876
.427 1.54

.453 2.18

.487 2.76

.487 2.76

.496 2.90

.500 2.96

.521 3.25

.540 3.50

.540 3.50

.540 3.50

.540 3.50

.572 3.93

.598 4.30

.618 4.63

.633 4.94

.645 5.23

3.2 Bifurcation Diagram

The bifurcation diagram resulting from varying the Rayleigh
number is shown in Figure 2. The ordinate corresponds to the
asymptotic maximum magnitude of the flow field. We selected to
keep a linear scale on the abscissa in order to show the functional
relationship of the velocity on the Rayleigh number. There exists
four distinct regions illustrating the path from steady advective-
diffusive flow to chaos. Each region has its own particular flow
field structure. As the Rayleigh number is increased three distinct
bifurcations occur. During the first bifurcation from a to L, there is
an exchange of stability from a steady flow to selforganization of
the flow field to two cells. This is similar to the first bifurcation in

the Rayleigh-Bemard problem which results from growth of
monotonic disturbances. However, the Rayleigh-Benard bifurcation
occurs from a quiescent state. In the second bifurcation from _, to
c there is transition from two cells to four ceils. This bifurcation

gives birth to a limit cycle, known as the Hopf bifurcation. Note
that in region c the velocity increases like the square root of the
Rayleigh number; this is a principal property in the neighborhood
of a Hopf bifurcation. The third bifurcation from c to d results in
the transition to six cells. This yields, as will be shown, to a two
frequency toms, also known as a secondary Hopf bifurcation. A
new frequency component arises which is incommensurate with
the prior frequency from the limit cycle. These two frequency
components form an irrational fraction; in this case the flow is
quasi-periodic. This route to chaos via bifurcation to a two fre-
quency toms corresponds to the scenario proposed by Newhouse,
Ruelle, Takens 9. In region d, further increase in the Rayleigh
number leads to chaos. This is indicated, as will be shown, by a
thick chaotic limit set in the phase space trajectory and a broad-
band power spectrum. In the following we describe the fluid
dynamic structure in detail. We show the effect of the aspect ratio
on stability of the flow field. For each region of the bifurcation
diagram we discuss qualitatively its local bifurcation, the mechan-
isms by which stability is lost, and we quantify each region of the
flow based on its time histories, phase space trajectories, and
power spectra.
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Figure 3. Structures of field variables corresponding to the four regions in the

bifurcation diagram.

3.3 Flow Field Characteristics for Regions a-d

The flow field characteristics, corresponding to regions a-d
on the bifurcation diagram for representative Rayleigh numbers
are shown in Figure 3. We show contours of the scalar com-
ponents, concentration and temperature. The structure of the flow
field is illustrated with contours of the stream function and the
direction of the flow with velocity vectors. The stream function is
divided into ten intervals, _- _, _t'_- _/_, and the maximum
of the vector field is indicated on the right hand comer of the vec-
tor field plot and it is scaled as I/_/.8- ¢m/sec. For a particular
case in region a (Rar- 1.92) the flow is advective-diffusive, it is
unidirectional with a parabolic velocity profile. Since the Lewis
number does not equal one, the scalar components do not diffuse
at the same rate. The deviation of the scalar components from its
initial conduction state is small. This condition corresponds to a
typical situation that would occur in low gravity. And it also
represents the best mode for growing crystals because the flow is
steady and the gradients in concentration and temperature are uni-
form at the crystal interface. Note that for the low gravity condi-
tions, see Table 1 cases 12-14, the Rayleigh number was varied
through the g-level so that it would become less than the Peclet

number. The results show that the asymptotic velocity field is
equal for all three eases. Thus at a certain g-level or corresponding
Rayleigh number, as shown on the bifurcation diagram, there is no

change in the asymptotic state of the velocity field. In region h
(Rat- 3.02x104), after the first bifurcation, the base advective-
diffusive flow selforganizes into two cells. This flow field gives
rise to plumes as shown in the concentration and temperature field.
Oscillations that occur in this region are damped and an invariant
steady state flow structure exists. Because a steady state exists in
this region, good quality crystals can be grown, however precau-
tionary measures should be taken. The bifurcation from region /_
to c (Rar -6.10x10 _) leads to four cells, even though detailed stu-
dies _s of the global dynamics of the flow field show that it
approaches an invariant flow structure, the oscillations are not
damped; they proceed forever. In region d (Rat - 4.05×106) the flow
field bifurcates to six cells. The strength of convection increases
by two fold. The intensity of the convective flow field causes the
formation of counter propagating plumes from the top and bottom
of the cavity. The long time asymptotic state is no longer periodic,
the flow has become aperiodic. For high quality crystal growth
regions c and d should be avoided.

3.4 Global Dynamics of The Flow Field

Two types of flows prevail for the range of Rayleigh
numbers considered, core driven and boundary layer driven flows.
We illustrate the typical dynamics of the flow field as time
increases for a fixed Rayleigh number for these flows. In Figure 4
Rat - 3.83×10_, for the core driven flow, we show the typical evolu-
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Figure 4. Transition to steady state for a core driven flow, RaT- 3.73x104,

Pe - .876, Pr -.871, Le -.411

tion toward an invariant flow structure. The evolution of the flow
field gives rise to a plume, t -.578. At t -.77, there is a loss of
symmetry; the fight cell grows. This growth continues until there
is an invariant structure comprised of a single cell at the right
hand side and uniform flow on the left hand side of the cavity.
The overall trend of this flow is clockwise. This structure is simi-

lar to a result shown by Shvartsblat 16 for a related problem. Note
that for other cases examined, see Table 1, the invariant structure

is a counterclockwise flow. The directionality of the invariant
structure of the flow field have equal probabilities in terms of the
sense of rotation. This is similar to the Rayleigh-Benard system
which also shows equal probability in the sense of rotation of the
cells. This case shows that the dynamics of the flow evolve to an
invariant structure which is steady. However, for Rayleigh
numbers in region c, the invariant structure pulsates because of
oscillation in the flow.

Another case of interest is the boundary layer driven flows.
An illustration is shown in Figure 5 for Rat - 1.53x107. In this case
we show the evolution of the flow field. Initially there is an inten-
sive flow at the side walls. This is in contrast to the core driven

flow where the initial changes in the scalar components occur in
the middle of the cavity. This intensive flow leads to the forma-
tion of four cells, t -.0011. Two counter rotating cells are formed

near the top boundary which reverses the direction of the top

plume. This occurs because the flow is so strong that it stagnates
at the top boundary, thus forming a counter rotating flow. The
flow field subsequently evolves to six cells, t-0015, in whic_
there are two counter propagating plumes from the top and bottorr
of the cavity. As time increases, further bifurcation of the flox_
field structure occurs, such as growth and amalgamation of cell.'

and oscillations of the flow field structure.

3.5 Effect of Aspect Ratio

To discern the effect of the aspect ratio on the bifurcatior

diagram in Figure 2, it would be necessary to construct ar
independem bifurcation diagram for each aspect ratio of interest
Since this is not our intended purpose, we will simply fix the Ray-

leigh number threshold through the temperature differencz
(AT- 10°K, which corresponds to case 5 ), and vary H and L
sequentially to approach both a horizontal narrow cavity as well a_
a vertical one. We show the aspect ratio and its corTespondin_

Raylcigh number in Table 2. Ar -5 represents the verticaa narrow
cavity, whereas Ar-1/5 represents the horizontal narrow cavity
The result for this parametric variation is shown in Figure 6. Note
that the maximum velocity occurs for the square cavity. As w(

approach the vertical narrow cavity Ar -5 the velocity decrease*
slowly and the flow field becomes stable. This corresponds to th(
advective-diffusive flow of region a on the bifurcation diagram
This shows that wall effects, because they intoduce viscous drag

56



cmlC¢lltralk)l|

I.o

o.t

o,6

o.|

o.2

|('illl)('ralllr(' A_l'Cmll ftlnClloll vrh_||y _It

t - .00086. _/== - 50.73. Vmll - -20.12. A_/- 7.09

t.o ,,,

o.t

o._

o._.

o°1

o._

o.i

o,o

t - .0014. V/am - 27434, v/u - -134.99, A¥ - 40.93

_. 00q"

t -COll. qty. 121.28. Va,_- --67.35. AV" 18.86

t - .0015. Ym_ - 244.3 I, _u - -147..52, 6_ - 39.18

0.9

0.|

0o;

>.. O.l

0.1

0.2

o.t .663

°*°o.o o.z 0.4 o.t o.| 1.o o.o o.;_ o._. o.t o.I hD 0.00.Z 0.'.. 0.60.e t.O 0 0 Z 0 ,t. 0 t 0 I I 0

X X X X

Figure 5. Evolution of the flow field for a
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are effective for damping convection. Also, in accordance to our
scaling, since the height is fixed, the Rayleigh number does not
change for the parametric variation approaching a vertical narrow
cavity. This sealing shows conflicting trends between the solution
and the magnitude of the Rayleigh number. Though the magnitude
of the Rayleigh number indicates that we should be in a convee-
tively dominated regime, the solution shows that the flow field
becomes stable as the aspect ratio increases. In order to remediate
this conflict, we hypothesize that the proper characteristic length
should be the smallest dimension for cavities that are rectangular.
In agreement with tiffs hypothesis is the parametric variation to
approach the horizontal narrow cavity. Note that in this ease, since
the dimension that is being varied,/-/, is the one used as charac-
teristic length to scale the equations, the proper trend in the thres-
hold of the Rayleigh number is reflected as the aspect ratio
decreases. As we approach a narrow horizontal cavity there is a
much faster change in the characteristic velocity. The results also
show that the velocity tends to be higher for narrow horizontal
cavities than for vertical ones, this is due to stronger wall effects
for the vertical narrow cavity.

4. Dynamics of Flow Field At Fixed Point

In this section we analyze the four regions on the bifurcation
diagram in Figure 2 from a dynamical systems perspective. For
each region we analyze the time histories of the flow field and the
scalar fields, the phase space trajectories of the flow field, and its

boundary layer driven flow,

Ilvli s

{em/sec)

0 1 2 3 4 5

0
Figure 6. Effect of the aspect ratio

TABLE 2 - EFFECT OF ASPECT RATIO

I Case _ Ar Ra T
20 1 1/5 2.13x103
21 1 1/2 3.32x104
22 l l 2.66x105

22_3 ] 2 2.66xI05
1 5 2.66x105
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power spectra. The phase space trajectory is obtained by plotting
one component of the flow field versus the other. The Vower spec-
trum is evaluated using the Cooley-Tukey algorithm 17 . 18 and a

Harming window is used for filtering. The power spectrum for a
variable, say x, is estimated using Fast Fourier Transforms, from

2 (12)
P_(f) = Ws(f) * Pz(f) ' (13)

R is the finite time duration of the data, /_(f) is the estimated
power spectrum, and Ws(f) is a spectral window for smoothing.
The resulting smooth spectral estimate e_(f) is obtained from the
convolution relationship in equation 13.

In order to select the best point in the flow field to display
the dynamics, we plotted a set of points selected from various
regions in the cavity. Regardless of the point selected, the results
were similar, though they differed in amplitude. For each data set
we used 5000 points. This required excessive data storage, for
example one data set for our grid size (60x60) is on the order of
800 megabytes. In addition, a large number of CPU hours
(depending on the machine, 30-100 hours on the average per case)
is also necessary for computing the asymptotic behaviors of these
flows. In some cases, because of resources, we were forced to be
conservative.

4.1 Qualitative Bifurcation and Stability Analysis

Before delving into the results, we present qualitatively an
explanation of the local bifurcation for the exchange of stability of
the results in Figure 2. According to the literature on bifurcation
and stability theory, if an infinite dimensional problem (set of cou-
pled partial differential equations such as this problem) is approxi-
mated Via truncation, it is possible to reduce the problem to a
finite dimensional space (set of coupled ordinary differential equa-
tions). Given this step, one considers for argument sake an auto-
nomous set of initial value ordinary differential equations,

Z, = f(Z, A) (14)

Z(0)=T! for t >0

where Z is a vector denoting the independent variables, Z is its
change with respect to time, A as before is a vector space contain-
ing n parameters, _ is its initial or stationary condition. In accor-
dance with the constraints in our problem, let A = Rat, this reduces

the parametric dependence to a single parameter. The solution to
the above set of equations yields a family of flow lines or trajec-
tories. The basic question is whether or not the trajectory of z
remains near the neighborhood r(z, Rat)= 0 for a given Rat as
t ---)_. If the trajectory of Z remains bounded in the neighborhood
where f(Z, Rar)- 0 then the system is stable, and if z grows or
becomes unbounded then the system is unstable to the given state.

Thus, it is necessary to investigate the set

f(Z, Rat) = 0 (15)

tO find the stationary or equilibrium points. The solution of this set

of equations yield the stationary points,

(zl, z_ .......... z_)

n corresponds to the dimension of the vector space. The next
question as to whether or not the trajectory of the system remains
in the neighborhood of these points, requires the solution of equa-
tion (14) near the points. This is aceomplished by expanding f
near the stationary points using a Taylor's series expansion. Drop-
ping the parameter Rat for simplification and using component
notation, the equations become

Zi =fi ( Zl, Z2 ........ Z_) (16)

where,

ft (ZI,Z2 ....... Z.)'ft (Z] ,Z_ ....... Z;_)+

_f_
_(Zt, Zt ...... ZD (zt - z'l ) +
0zl

_fl s

_z((z,. z_ ...... z_')(z2- z_>+ ......

(Z_ , Z_ ...... Z_) _Z. - Z_) + higher order term._
n

i-I,2 ......... n

Then the local bifurcation of the system may be approximated by
a first order approximation which indicates the degree to which
the system deviates from its stationary values. This is represented
by the vector,

¢_ it) " Zt (t) - zZ i = I, 2 ....... n (17)

Then the linearized system in vector notation becomes

$ = ,IS ¢, (18)
where

J' - _(Z')

js m

[_Y_Lt af, (zl
(Zl, zl ...... zD _ ,

/ _Y-_(zI "z' zD _Zi-2(zt.... ......

• zi ...... _) .... -a2T(zz, zl ...... z,')

_f2 (z_
, z_, _) _ z_ ..... z;) /

/

J' is the Jacobian matrix of the first order partial derivatives from
the Taylor series expansion. The solution to equation (18) yields
results concerning the local stability of the system. Since the sys-
tem is linear, its solution may be obtained by inserting in equation
(18) the hypothesis

01 (t) _e°t _l (19)

where a is its eigeuvalue, and _i its eigenvector. Equation (18)
becomes an eigenvalne problem as follows

(J' - _D _ = 0 (20)

where I is the identity matrix. In order for equation (20) to have a
nontrivial (linearly independent) solution it is necessary that
(_., 0), therefore o_. o_ ....... o. have to be the roots of the follow-
ing characteristic equation

det(J' - _I) - 0 (21)

In the above equation, det is the determinant. After evaluating the
roots from equation (21), they may be inserted in equation (20) to
find the eigenvectors _. However, the local stability is determined
from the eigenvalues of equation (21). For our reduced case. the
_igenvalnes depend on Rat,

c_(Rar) - _(Rar) + j r_(Rar) i - 1.2 ...... .n (22)

The general stability result, according to Liapunov 19 may be
stated as:

(a) Re(oD < 0 implies asymptotic stability for all i

(b) Re(oD > 0 implies instability for one or more i.

The behavior of the trajectories near the equilibrium or stationary
points may be deduced from the values of o_. For example, con-
sider a simple system with i= 2 which reduces the eigenvalue
problem to the solution of quadratic roots. We will examine
several cases in order to illustrate the qualitative behavior of tra-

jectories _. From equation (22) consider the case when the eigen-
values 9.t, ZO are real, .i.e _ = 0; two cases occur:

(I)_.t'Xa> 0, X_* _,

In this case the equilibrium or stable point Z' is called a node.
Two subcases result depending on the sign of X. If x < 0, the node
is stable. However, if X > 0, the node is unstable. This can be seen

by examining lime x_ for X > 0 and X < 0.
t-¢-_
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Figure 7. Qualitative behavior of state space trajectories with
corresponding characteristic exponents and multipliers

(2) _.1"_-2< 0,

In this case the stationary point is called a saddle point, which is
always unstable. Typical trajectories for these eases are illustrated
in Figure 7a.

For ,_,-*0, complex conjugates occur, and the trajectories
near the equilibrium point resemble a spiral. For example, set

Gt - k + j_¢ , o2 - k- jK

For _. > O, the corresponding equilibrium is called an unstable
focus, and for 7. < 0, a stable focus. Degenerate cases also occur,
one example is for ol_-:l:jr., the corresponding trajectories are
simply concentric circles as shown in Figure 7b. In addition note

that since cr depends on Rat, the position and qualitative features
of the stationary point varies as Ra r changes. Thus there is a tran-
sition from one qualitative feature to another on the bifurcation
diagram in Figure 2 as RaT increases.

This analysis yields the characteristic exponents as shown in
Figure 8. Other characteristic trajectories such as a limit cycle may
also occur. A limit cycle is a closed curve towards which the tra-
jectory winds; it is the orbit of a periodic solution. This means
that after some period _, the solution value remains the same,

Z(t + 7?)- Z(t)

The limit cycle may be stable or unstable depending on whether
or not trajectories respectively approach or leave the neighborhood
of the limit cycle. Examples of limit cycles are shown in Figure
7c. When Z(t) is periodic, it is necessary to use Floquet theory to
find the eigenvalues 20. These eigenvalues are called Floquet mul-

tipliers or characteristic multipliers (C.M.) as denoted on Figure 8.
If the characteristic multipliers lie inside the circle the system is
stable. When the characteristic multipliers cross the unit circle, the
.system becomes unstable. The mechanism by which stability is

Im (o') Im (o') Im Im (a,)

Charactedstlc exponents Characteristic multipliers

Figure 8. The mechanisms by which stability is lost

lost depends on how the characteristic exponents cro._s the axis of
the real plane, likewise how the characteristic multipliers cross the
unit circle.

Three dimensional spiral cycles can also occur as a result of

losing stability. Illustration of spiral cycles are shown in Figure
7d after Abraham & Shaw 21 . These toroidal spiral cycles can
result when there is a lost of stability from a limit cycle. If
another frequency component arises, then a two frequency torus
can occur as illustrated in Figure 8.

5. Quantitative Analysis of the Dynamical Behavior of the
Flow Field

5.1 Region a

We now analyze in detail the dynamical behavior of the flow

field for each region on the bifurcation diagram in Figure 2. We
summarize the qualitative implications by which stability is lost in
Figure 8. In the region where 0 < RaT < 9.0x103 the flOW field is
stable it is dominated by the advective-diffusive flux also known
as the Stefan flow. The time history of the flow field as well as
the scalar field are shown in Figure 9. These results indicate that
the dynamics of the system approach a steady state behavior. This
steady state behavior corresponds to a point attractor as shown by
the corresponding location of its characteristic exponents, see Fig-
ure 8. Since there is no oscillation in the flow, the charateristic
exponent lies on the negative real axis. As expected the concentra-
tion and temperature fields do not diffuse at the same rate, since
Le * 1. This behavior is typical for any Rayleigh number in this
range.
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Figure 9. Dynamical behavior of a steady flow
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The first bifurcation from region a to b gives birth to a
spiral; this is illustrated in Figure 10a by the phase space trajec-
tory. The dynamics of the system indicate that the oscillations are
quickly damped and the system approaches a point attractor. Dur-
ing this bifurcation the flow field selforganizes into two cells. This
is similar to the Rayleigh-Benard system. Because of oscillations
in the system the characteristic exponents are complex conjugates.
As the Rayleigh number is increased (Figure 10b) these complex
conjugates approach the real axis, see Figure 8. The behavior of
the dynamics of the system change, it takes longer for the oscilla-
tions to decay. This is exemplified in the phase space trajectory
by an increase in the number of spirals before it approaches its
limit point. In this region which spans 9.3×10 3 < Rat < 8.0",<10_, this
course of event is representative.

5.3 Region c

Regions a-b demonstrated stationary states in which a
dynamical equilibrium is approached. In contrast to the first bifur-
cation, the second bifurcation from b to c connects an equlibrium

state to a periodic state. There is an exchange of stability from a
stationary state to a periodic state. This bifurcation gives birth to
a limit cycle; this is known as a primary Hopf bifurcation. The
dynamical system characteristics of the flow field are shown in
Figure 1I. Near the Hopf bifurcation point, the asymptotic limit of
the dynamics of the system shows very small oscillations, and a
corresponding limit cycle in the phase space trajectory. The
corresponding power spectrum shows a monofrequency response
of approximately 0.2 Hz. As the Rayleigh number is increased, Fig-
ure 1lb, the amplitude of the oscillations increase. For a different
location of the flow field, Figure 1 lc, we show a limit cycle with

a corresponding power increase in the power spectrum. However,
the frequency response of the flow field remains the same. Further
increase in the Rayleigh number (Rat - 6.10xl0 5, Figure 12 ) of the
system shows that its dynamics exhibit nonlinearity. This non-
linearity is indicated by integral multiples of the fundamental fre-
quency in the power spectrum of the flow field. In Figure 12a and
12b we show the short and long time asymptotics of the flow field
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Figure 13. Transition to a quasi-periodic flow

respectively at the same point. Note that we obtain basically the
same results, however 12b shows sharper resolution of the fre-
quencies in the power spectum. In this region we have a stable
limit cycle; its corresponding characteristic mulfiplier is shown in
Figure 8. Its location is on the real axis inside the circle. This
region spans the range 8.0xl0 4 < RaT < 7.0x10_

5.4 Region d

In the bifurcationfrom regionc to d, thereisan exchange of
stabilityfrom stableto unstableoscillation.The dynamicalsystem
characteristicsare shown in Figure 13.In thissequenceof events,
the power spectrashow the occurenceof an incommensuratefre-
quency. The frequencyratioof thisnew component to the prior
frequencyforms an irrationalratio.This indicatesa quasi-periodic
state.The phase space shows the increasein complexityof the
dynamics. Varying the locationin the flow field,13b,tellsbasi-
cailythe same story.Note thatthe amplitudeof the flow field
increasesdramaticallyin comparison to the casein Figure12.The
mechanisms of exchange of stabilityare illustratedin Figure8;in
thiscase the bifurcationgives riseto complex conjugatemulti-
pliers.Stabilityislostthroughcrossingthe unitcirclethroughthe
positiverealcomponents of the eigenvalues.Thiscorrespondsto a
bifurcationto a two frequency toms which is alsoknown as a
secondary Hopf bifurcation.This bifurcationto a two frquency
torusisone of the routesto chaos,which has been postulatedby
Newhouse, Ruelle,and Takens 9.

In thisregionof operation,a slightchange in the parameters
of the system can resultin unpredictablebehaviorof the futureof
the dynamical system. This is ilinstratedin Figure 14; for an
increasein Rayleigh number, the system transitionsto chaos.This
isindicatedby a broadband responsein the power spectrum,14a,
and a thickchaoticlimitset in the phase space trajectory.This
thickchaoticlimitset indicatesthatthe futureof the system is
unpredictable.The preciselocationof a pointcannot readilybe
discerned.Note thatthe concentrationand temperaturefieldsdo
not exhibitthe same response as the flow field;thisis due to
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different dissipative mechanisms. Another location in the flow
field, 14b, shows similar trends.

Subtleties in the dynamics of the flow field in the chaotic
region as the Rayleigh number increases are shown in Figures 15,
16, and 17. As the Rayleigh number is increased, the response of
the flow field shows an increase in amplitude. This is evident from
a comparison between Figure 14a and Figure 15_. The power
spectra exhibit a broadband distribution with more power concen-
trated at the low frequency region. At different location in the
flow field, there is variance in the phase space trajectory, however
the underlying feature of a thick chaotic limit set is preserved.
These trends continue as the Rayleigh number increases, Figures
16 and 17. Note that for the highest Rayleigh number, Figure 17b,
the phase apace trajectory shows that the density of the thick
chaotic limit set increases, which emphasizes the underlying future
unpredictability of chaotic systems.

6. Applications to Crystal Growth

We have related the physics of the physical vapor transport
process to actual laboratory practices by the experimentalists
terms of the parametric space of the system. For physical vapor
transport with the presence of impurities, there occur 5 indepen-
dent variables r/;presented by our parametric space
A = A (Rar, Ar, Pe, Pr, Le ). Our interest in the growth of large bulk
singie crystals(Ar=-l) for a specific material (mercurous chloride)
with a predetermined impurity content has reduced the parametric
space to a single variable, A- A (Rat). This implies that the pro-
cess is con_olled by varying the temperature difference between
source and sink (AT). Thus a bifurcation diagram that can serve as
a road map to an experiraentalist is constructed. Its usefulness lies
in its succint representation of the dynamical characteristics of the
process. We have shown four basic regions for a Rayleigh number
range that covers low gravity to actual ground based conditions. It
has been shown 22 that high quality crystal growth can be
obtained from low Rayleigh number growth conditions. This is
because the growth of high quality single crystals requires steady
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Figure 16. Dynamics in the chaotic region for RaT = 4.05x106,
and RaT - 8.03×10s

transpon of heat and mass. In this regard, the lower Rayleigh
number range should provide the best growth conditions.

In terms of our bifurcation diagram, region a is the best
parametric range to grow crystals (0 < Rat < 9.0x103). Unfortunately
for growth of large bulk single crystals it is not possible to obtain
this parametric range in ground based laboratory conditions. This
is possible only under low gravity conditions. The next range to
grow crystals lies in region b (9.0x10_ < RaT < 8.0x10_). In this range
it is also possible, under very careful experimental conditions, to
grow high quality crystals. By careful experimental conditions, we
mean that the furnace facility has to be able to be tuned appropri-
ately to obtain AT as small as possible. This is not always possible
given the limits associated with controlling temperatures in fur-
naces. However, if this is possible, even though flow oscillations
occur in this parametric range, they decay eventually. And crystals
can be grown under steady conditions, however the start-up of the
process which involves nucleation events should proceed with cau-
tion. It is necessary to allow enough time for the system to settle
to a steady state condition.

Beyond region b, the dynamics show that the process never
reaches a steady state condition. Thus crystals grown under these
conditions will show poor quality because of the fluctuations in
the field variables which indicate unsteady heat and mass tran-
sport. Unfortunately under most ground base conditions the
parametric range of region c is the most readily achievable condi-
tion obtained in a given furnace. However, as we pointed out,
increasing or decreasing the aspect ratio is another parameter
through which the dynamical characteristics can be changed. For
argument sake, ff we increase the aspect ratio and reconstruct the
bifurcation diagram, we would effectively shift all bifurcation
points to the right. This would give the experimentalist ge. ater
control of the process. A growth condition occuring in regmn c
would be shifted to region b, and so on, where high quality crystal
growth could potentially be carried out. However, we must
emphasize that low gravity conditions are very effective for
obtaining growth conditions in region a.
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7. Summaryand Cnnchlsions

We have studied numerically the dynamical characteristics of
flow field structures and its route to chaos in the physical vapor
transport process. We showed that five independent parameters
quantify the process. For a specific experimental system, we were
able to reduce the number of parameters to a single important one,
the Rayleigh number. To obtain a global picture of the process we
constructed a bifurcation diagram and showed its distinct bifurca-
tion sequence on its route to chaos. We explained qualitatively the
mechanism of exchange of stability for each bifurcation event
em.ploying ideas from bifurcation and stability analysis. Each
region in the bifurcation diagram was quantified through its time
histories, phase space trajectories, and power spectra.

We show that four regions with distinct flow field structures
occur. These structures occur through selforganization of the flow
field. During the transition from one region to another, three dis-
tinct bifurcation events occur. The flow field structure transitions

from a unidirectional advective-diffusive flow ( 0 < Rar < 9.0><103)
to two ceils (9.0x103 < Rat < 8.0xl04 ), subsequently to four cells
( 8.0xl04 < RaT < 7.0><105), and finally six ceils,
( 7.0x105 < RaT < 5.03xi07 ). During each bifurcation sequence there
is an exchange of stability from one type of dynamical behavior to
another. The first bifurcation event gives birth to a stable spiral in
which a point attractor is approached. In the second bifurcation
there is an exchange of stability from a stationary state to a
periodic limit cycle. This is called a standard Hopf bifurcation. In
the third bifurcation there is an exchange of stability from stable
to unstable oscillation. In terms of trajectories this corresponds to
an exchange of stability from a periodic limit cyle to a two fre-
quency toms. This unstable oscillation introduces all incommen-

surate frequency which gives birth to the two frequency toms.
This route to chaos via torus bifurcation has been proposed by
Newhouse, Ruelle, and Takens.

In so far as crystal quality is affected by the convective level,
it is important to know the convective region that one is operating.
In this regard, a bifurcation diagram is very useful to an experi-
mentalist. Decreasing or Increasing the aspect ratio is very
effective for damping convection and achieving steady growth
conditions. However, if one is constrained to grow large bulk sin-
gle crystals, the bifurcation diagram indicates that 0 < ear < 8.0xl03

is the best region for crystal growth. For the cavity size con-
sidered, this can only be achieved under microgravity conditions.
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9. Nomenclature
Ar aspect ratio (H/L)
/SAB molecular mass diffusion coefficient
r function

_' acceleration of gravity
go acceleration of gravity on earth
H cavity height
Im imaginary number

imaginary number
j unit vector in vertical direction
J' Jacobian of matrix

L cavitywidth
Lc Lewis number

M molecularweight
p hydrodynamic pressure
P partialpressure
Pz power spectrum of variable _c
Pe Peclect number based on mass diffusion
Pr Prandtl number
R time duration of data

RaT thermalRayleigh number
Re real number

t dimensionless time

T dimensionless temperature
f' period
7; characteristic time (/t2/<_)

u, v dimensionless velocity in x and y directions 0F/t/,.. ,'It,',.)
U_. characteristic velocity based on convection (a/H)
U,, characteristic velocity based on the advective-diffusive flux

x, y dimensionless horizontal and vertical directions (x" IL. y"/H)
Ws spectral window

Z vector denoting independent variable
1? for all

Greek characters

r boundary of cavity
^ parameter space
a thermal expansion coefficient
13 thermal expansivity
zx difference

T solutal expansivity

ratio denoting reduction in acceleration of gravity
_t dynamic viscosity
v kinematic viscosity
o) mass fraction
_1' dimensionless stream function (W'IUcH)

V gradient in x and y directions
o density

eigenvalue
eigenveetor

V2 Laplacian in two directions
dimensionless vorticity (_"H/U¢)

Subscripts

A, B denote components
c crystal
s source

T total

Superscripts

* dimensional quantity
- average quantity
s stationaryvalue
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